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Asymptotic Properties of a Sensor Allocation Model

D. P. Gaver

P. A. Jacobs

M. Youngren

0. Introduction and Summary

Sensor resources are to be allocated among I non-overlapping but possibly

contiguous geographical locations called nodes. Each sensor look at a node results

in an observation, with error, of the number of units that are at the node. In

military applications units may be individual assets such as tanks or ships, or

possibly small groups organized as platoons or companies and in geographical

proximity; in ecological applications, they might be animals, singly or in groups,

or particular vegetation types. The observations are then to be used to estimate

the numbers of units at each node. The problem is to allocate sensor resources so

as to minimize a measure of the error of the estimates, and of the estimate of the

sum of the numbers at all nodes. It is assumed that the units remain on the nodes

and do not migrate, although for some sensor types the units must be in motion

on the node at least some of the time in order for detection to take place.

The objective of this paper is to propose and study adaptive allocation of sensor

effort in such a way as to focus the sensor's attention sequentially and

purposefully on nodes so as to pay most attention to those nodes about which

the greatest uncertainty, or interest, currently prevails. This problem has features

in common with adaptive bin-packing problems (cf. Gaver et al., 1995) and

adaptive allocation of customers to servers (cf. Gaver et al., 1993).



Numerical examples show that a properly selected sequentially adaptive rule

will provide estimates of improved precision.

A related investigation that has recently come to our attention is that by

Thompson and Seber (1994). Their procedures can also be analyzed using the

methodology proposed in this paper.

1. The Model

There are I nodes. Assume that node i contains r% units. Sensor resources are

allocated to one of the I nodes at times that occur according to a Poisson process

with rate A. The sensor resource is allocated to node i with probability a\ which is

tailored to depend on past allocations in a purposeful way. Let Zn (i) be the n ih

observation of node i; a simple model is that {Zn (i); n = 1, 2, ...} are iid with

binomial distribution with r\ trials and known probability of success pi which is

the probability of unit detection at node f. We assume for illustration that the

number of units on a node does not change, although an adaptive scheme of the

type proposed should effectively follow changes in node population.

Let N,<0 be the number of times in [0,t] that node i is observed by a sensor.

Let

V(/;0 = Z
1 (0 + ... + ZN . (f) (0

be the sum of all the observations during [0,t ] for node i.

Under some conditions V(i; t) has a binomial distribution with Ni(t)ri trials

and probability of success pi, given N{(t), although this assumption may not be

especially accurate in general. Assuming it to be adequate for the moment, an

estimate for the number of units at node i based on observations made during

[0,f ] is



with

Var[f
i(»)]=

'iN' (<)P

f7'
)

(1-2)

rfr-Pi) r,(f)(l-p,) _ V(1; t)(l-p,)

NiWft N,(<)Pi Ni(t)
2
pf

There has been much statistical attention paid to estimating the number of trials

in a binomial distribution, given probability of success; for recent discussion see

Hall (1994). Here we use the simplest such estimator.

Now consider the following adaptive allocation rule. A sensor resource arriving

at time t is allocated to node i with probability

€H(W).Vi(t)M*W)) - ^'(Nf

M

'm)
a-*)

2>;
(n

;
(0,v

; (0)
7=1

where the h{ are strictly positive sufficiently smooth functions such that

hjicPx, cvy) = cvhfa, y).

One possible form for h{ is

hi(x f v) = 2 2
for y>0 and fl,>0; (1.5)

if it is assumed that given N{(t ), V,(0 is binomially distributed with mean N,(f)p
z
-,

then from (1.3) it follows that for this function h{, sensor resources tend to be

allocated to those nodes for which the variance, and hence its square root, the

standard error of the estimated number of units, is the largest; the probability of

allocation to the most uncertain node (by this measure) increases rapidly,

approaching unity as /increases. This tends to bring down that standard error

quickly, and to equate standard errors of the estimates across nodes. Clearly,

alternative measures of overall sensor performance are feasible, and possibly

desirable, such as ones that endeavor to equalize fractional or percent error on



nodes, or ones that also respond to an independent measure of importance of the

units on a node. Additionally, node contents may be of various types, which can

be considered. Thus, the present discussion is of an illustration of an adaptive

allocation scheme.

The purposeful allocation of (1.4) introduces dependence between {N/(0; t > 0}

and [Vjfjt); t £ 0}. Asymptotic results for the means E[N{(t)] and E[Vj(t)] as the rate

of the Poisson process A -> <» are obtained in Section 2. It is shown that the

purposeful allocation estimate j$(f) is asymptotically unbiased. Section 3 presents

results for the asymptotic means for specific form of function hi (1.5). Section 4

discusses asymptotic results for the second moments of {N
2(0; t > 0} and [Vfit);

f >0} and presents approximate expressions for the VbrTf^i)] and Var

i

Section 5 describes a simpler Poisson approximation. Section 6 presents results

from simulation experiments.

2. First-Moment Calculations and Asymptotics

Note that for h >

^NAt +hpitlVit^NiW + XoiiNrfh. (2.1)

Thus

E[N
t
(t + h)] = E[N,-(f )] + lE[ai {N, V)h]. (2.2)

Assuming derivatives exist, we have

lE[N,(0] = AE[ai(N(0,V(f))]. (2.3)
dt

Similarly,

E[v
{
(t + hp(t),V(tj\ = Vi(t) + Mai(N,V)riPi . (2.4)



Thus,

E[Vi(t + h)] = E[V-(0] + ^i-p,-E[ai(^/vW- <2 -5 )

Assuming derivatives exist, we have

j-
t
tfyi(t)]= npi*tf.<*i(x,v)]. (2.6)

Assume a,- is of the form (1.4) where h{ is sufficiently smooth with

hi(cPx, cVy) = cPhiix, y) for constants c and h&x, y) > for all x, y > 0. We have

(2.7)

X^(n
;
(0/a,v

;
(0/a)'

Assume lim N
J
(0/A = m

J
(f), lim V-(r)/A = P;(0, lim ^-ElN^lX}^— nub),

A-»°° A-»oo A->» at at

and lim4-Efvi(0Al = -f-^W-

Dividing both sides of (2.3) and (2.6) by X and letting A —> °°, the bounded

convergence theorem yields

;

and

;

Thus,

^•(0=np,^W- (2.io)



3. Purposeful Allocation

The equations for mj(f), (2.8), can be solved for special functions hj. For

example, assume

hi(x,y) = 3- +
7 1x x
2
pf

for y>0 and a,- >0.

Since

v
i
(t) = m

i
(t)r

ipi ,

hi{m(t)Mt))=

In this case (2.8) can be rewritten as

where c,- = (l- pf) /p/.

The functions

<k
4

q(* -?»•)'
17

3'W m»WP» .

«/ + r
;
-c
;
- mi(t)

17

mAQ-Kto+tttfWi

with

K = X(wf/(r+1)

i-i

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

are a solution to (2.8).

Thus, in the limit as t -> <», the probability that a sensor resource at time f

looks at node i is

«i
=
v/ \r/(y+i)'

I(a/ +r/c;)

(3.6)



If 7= 0, then

<Xi = l/I (3.7)

and the allocation is equally likely.

If y—> ©o, then

o^-fLtaa-. 0.8)

i

If, further, the probability of detection on node i, pi is constant for all the nodes,

then the probabilistic allocation for y—» ©© is roughly proportional to the number

of units on the node.

4. Scaling and Approximate Variances of Estimators

Let

Xj(t)=
;W^ J— (4.1)

V;(0= 7 ^ ;
(4-2)

In Appendix A, moment generating functions are used to show the

asymptotic normality of [(Xj(t), Yj(t)); t > 0} as X -» «». Further, differential

equations for their second moments are obtained.

Rewriting

N
;
(0 = Am

;
(0 +VIX/W (4.3)

V
;
(f) = Ai;

;
(f) + VIV

; (0 (4.4)

An approximate variance of the estimator of the number of units on node i,



can be computed using the "delta method" as follows; cf. Bickel and Doksum

(1977). To begin,

Var[fi(t)] = -\ Var

Pi W)
(4.6)

A Taylor expansion yields

V
i
(t) _ Vi(t) + Yi(t)/tf

N
{
(t) miM + XM/yfX

fruit) mi(t)

+0

(4.7)

Thus,

Var
Vj(t)

«E

X

N,-(0 mi(t)

(4.8)

MM'
*,(')

n2

mi(t)

Vi(t)^W] +S 4^W]-2^E[yl(0xlW]m
f(0

=-^^{e[y?(0]+^ (4.9)

Hence, an approximate variance of the estimate of the number of units on

node i

Mhlt)]-^-r^{^?^
vt MW (4.10)

8



To approximate the variance of the sum of the estimates, a Taylor expansion

yields

= E
p,(0+v-(Q/Va Vj(t)+Yj(t)/4X

N»(0 N;Wj '[wjW + X^O/VI m
;
(f) + X

;
(f)/VI

m,(f)m
;
(f) X m,(()m

;
(t) i ' J

__afihW EfxKtjXyCOl+afjl
A[m,(0m,W]

2 l
;V

^ UJ

for i */'.

Thus,

Coifo-(0,r/(0) =—Co»

(4.11)

1 1

v;-(0 ^
N

I
(0'N

/(0 >

-J— {E[Yi(0VJ(0] " W;P;4XfWX/(0]}

(4.12)

* vmtt) ppnft)

Expressions (4.10) and (4.12) can be used to approximate Var

L i

5. A Simpler Poisson Approximation

Assume the probability of allocation a, is independent of (V
t
{t), N,(0); then

the number of looks at node i is a Poisson process with rate hx[ independent of

the other nodes. Further

E[N((t)] = 1 + o# (5.1)

4v«(0]=w[i+«^] (5.2)

Var[Ni(0]=c# (5.3)

Vflr[V-(0] =w(l-pf
)+a,/ TOP" «)+(»»*) (5.4)



(5.5)

where we assume that at time each node is looked at once.

In this case (4.10) becomes

VaAt
i
(l)\ =VJÊ ^--

and the estimators f,(f) are independent.

Assume purposeful allocation is adapted with function h{ as in (3.1). A simple

(5.6)

approximation to Var InC)
. l

can be obtained by neglecting all covariances and

assuming the number of looks at node i, {N,(0; t > 0}, is a Poisson process with

rate Xai where a; is determined by (3.6). In this case

Var ln(0 y i n(i-pj)

"fpiil+afi
(5.7)

6. Numerical Examples

Suppose there are 3 nodes with n units on node j with r\ = 49, ri - 25, and

r3 = 16. The probabilities of detecting a unit on node /, pj, are p\ = 1/11, p2 = 0.5,

and p3 = 10/11.

The variance of the estimate of the sum of the units on all the nodes under

purposeful allocation with h{ as in (3.1) was studied using simulation for y= 0, 1,

10. Each replication of the simulation begins with one observation at each node.

The times of arrival of a Poisson process with rate 1 are then simulated. A node

for observation at time t is randomly chosen using probabilities

«i(0 = K(0
oj

^

Vim -pd
Nffl Ni(t)

2
p?

10



for i = 1, 2, 3 with K(t) the normalizing constant. A binomial observation is

generated for the node chosen. The simulation has 500 replications.

Table 1 records the sample mean and square root of the sample variance of

3

the sum of the estimates ^?i(t) for t = 5, 10, 20, 50 where

,w WW
Also shown are the sample means of the square root of the sum of estimated

approximate variances (1.3)

N,(()
2
p?

Estimate of Total

ri = 49, r2 = 25, r3 =

Table 1

Number of Units on All Nodes

16; pi = 1/11, p2 = 0.5, /?3 = 10/11

Simulation Approximation

i

$<*® Square Root of

Differential

Equation

Approx Variance

Square Root

of Poisson

Approx
Variance

Time y Sample
Mean

Square Root
of Sample
Variance

Sample
Mean

5 89.8 18.0 15.0 13.9 13.9

1 88.1 15.1 10.7 12.3 10.7

10 89.3 15.2 10.9 12.5 10.4

10 90.3 12.4 11.9 10.9 10.9

1 89.8 9.2 8.2 9.1 8.1

10 90.1 10.2 8.6 10.2 8.0

20 90.0 8.9 8.6 8.2 8.2

1 89.5 7.1 6.1 6.7 6.0

10 89.5 8.3 6.5 8.0 6.1

50 89.9 5.8 5.5 5.4 5.4

1 89.9 3.9 3.9 4.2 3.9

10 89.5 6.2 4.3 5.7 4.2

11
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_ j

Table 1 also displays results of the approximate variance Var

obtained using (4.10) and (4.12) and solving the differential equations (2.8) anc

the second moment equations in Appendix A, (A.27) - (A.32). The equations

were solved numerically using the 4th /5th order Runge-Kutta-Fehlberg method

as implemented in MATLAB; (cf. Math Works, 1992).

ofTable 1 also displays the simple Poisson approximation to Var

(5.7) with the a, in (3.6).

I«0
L i

Recall that the estimate Var S«o is unbiased for both approximations. The

L i

true value of Vrj is 90. The differential equation approximation is close to the

square root of the sample variance for all values of yfor times 10, 20, and 50. The

Poisson approximation is close to the square root of the sum of the estimated

approximate variances; both of these approximations are neglecting the

covariances induced by the purposeful allocation; these covariances become

more pronounced as /becomes larger. There is no covariance for y= 0, equally

likely allocation. Note that the Poisson approximation is conservative. However

for 7= 1, the Poisson approximation is within about 10% of the differential

equation approximation which incorporates the covariances. However the

difference is larger for y= 10.

Note that the square root of the sample variance and the differential equation

approximation suggest that purposeful allocation with y= 1 yields the smallest

variance of the estimated sum of the numbers of units on all the nodes. A

rationale for this suggestion follows.

Suppose there are a fixed number of looks K that the sensor can take of all

nodes and the number of units on each node i, r{, is known along with the

12



probability of detecting a unit on node i, /?,-. Let k{ be the number of looks the

sensor gives to node i. If each observation has a binomial distribution

Var

J 1=1

(i-w)

Lagrange multipliers can be used to show that the (approximate) k{, i = 1, 2,

3

1
are it,- = [r,(l-p,)/p,J

2
. This solution corresponds tothat minimize Var

Li=l

the a,- of (3.6) with a,- = and y- 1. Thus, if one is interested in minimizing the

estimated variance of the sum of the number of units on all the nodes, then one

should look at node i a number of times proportional to [jj(l— Pi)/iPi] • If one

were interested in minimizing the estimated variance of the estimate of the

number of units on the node with the greatest number of units then one would

allocate all looks to that node; this corresponds to the purposeful allocation

policy of 7= oo.

Tables 2 and 3 present results of the simulation experiment with r\ = 49,

r2 = 25, r3 = 16 and p\ = 0.7, p2 = 0.8, and pi - 0.9. Table 2 presents the simulation

and approximation results for the estimate of the sum of units on all the nodes.

Table 3 presents the simulation and approximation results for the number of

units on the individual nodes. The differential equation results are close to the

simulated values for times t = 10, 20, 50. The Poisson approximation also seems

to be adequate. The Poisson approximation may be doing better in this case

because the probabilities of unit detection are larger. One source of the

covariance between the estimators j$(f) is the possibility that V(i, t) may be 0, in

13



which case node i will not be visited very frequently for y> for the purposeful

allocation with function hi as in (3.1).

Estimate of Total

M = 49, r2 = 25, r3

Table 2

Number of Units on All Nodes

= 16; pi = 0.7, p2 = 0.8, p3 = 0.9

Simulation Approximation

i

£>?(0 Square Root of

Differential

Equation

Approx Variance

Square Root

of Poisson

Approx
Variance

Time Y Sample
Mean

Square Root

of Sample
Variance

Sample
Mean

5 89.9 5.52 3.70 3.30 3.30

1 89.4 6.53 3.15 3.11 3.02

10 88.9 8.55 3.14 3.06 2.98

10 90.1 2.75 2.84 2.59 2.59

1 89.9 2.37 2.45 2.46 2.35

10 89.7 2.46 2.53 2.51 2.35

20 90.1 2.04 2.07 1.95 1.95

1 90.0 1.72 1.80 1.90 1.76

10 89.9 1.87 1.88 2.06 1.80

50 90.0 1.30 1.32 1.28 1.28

1 90.0 1.12 1.17 1.29 1.16

10 89.9 1.26 1.24 1.35 1.21

14
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APPENDIX A

In the Appendix we present details of the normal approximation. We follow

an analytical approach used in a different context in Gaver and Jacobs (1995), and

in Gaver, Morrison, and Silveira (1993). Let the moment-generating function

(assumed to exist, otherwise use the characteristic function) be

¥(0,$t) = E[exp{eN(t) + SV(t)}]

= E

[;=1 ;=1

Condition on (N,-(0, Viit)), i e {1, 2, ..., 1} to obtain

exp N(t),V(t)

= (1 - M)exp{6N(t) + £V{t
)}

+^Xa,(N(0,V(())exp{fflV(()+?V(0}[efl

'%,)]

%-)=e[^zW
where

with Z(0 an observation of the number of units on node i.

Let h -> to obtain

(A.l)

(A.2)

(A.3)

°*
1=1

Scaling

Let

"71 (A.5)

17



Vj[t)-toi(t)
(A.6)

and let A» 1.

Let

then

<p(0^;O = E[exp{fiX(O+WO}];

y(0/VX,£/VX;f) = p(ft £f)exp{VA[ft«(0 + £>(*)]}.

Thus, we have the following equation from (A.8) and (A.4)

l-i^/VA^/VA;*)

= l<p{0,&)exp{JX[em(t)+&(t)]}

^(p{0,&)exp{tf[em(t)+&{t)]femXt)+&Xt)]

(A.7)

(A.8)

+a£e
i=l -

-A<p(0,£f)

xexp{VA[ftn(f) + £>(*)]}•

Dividing both sides by expWX[Om(t) + £>(0]j we obtain

±<p{o,&)+,[X<p{e,&t)[em'{t)+fy'{t)]

+I^«/WO^(0)^V
;W +o(^Uexp{^(0 + ^(0}

(A.9)

A-/VX
4fe/VA)

(A.10)

/VX^/VA)
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Let

i

(A.ll)

where hj(x, y) is a sufficiently smooth function with first order partial derivatives

and hj(tfx,tfy)=tfhj(x,y).

Let

H,(x;*)«^
MmWMt))

(A.12)

^hj(mj;(t),Vj(t))

2>/(w/('W0)

>|
2 ^

^ J

dvk

(A.13)

(A.14)

H^(y;0= frfaM'^}
^-M«k(*^W) CA.15)

Note that

£fc/(w/(0/W/(0)

41
H

t.(x;OX,(0+Hl(y;Oli(0+lHiJk(x;OXjk(0+XHiJt(y;OVJtW
it it

(A.16)

+

19



Since

I«i(MW+ yTxXi(t)M(t)+ Vav;- (0) = 1 (A.17)

this implies that the summed coefficients of 1/vA, 1/A etc. must individually be

0.

Expression (A. 10) can be rewritten as

J L

,. 4
,
>i(0ft

,

i tf
,

i *t(0tf

VI VI 2 A 2 A

x<
frMQ/PiCO)

5>/(m/(0/*y(0)
p(fttO

+
VI

H.-(*;0^(fte')+H<(y;')^(ft60

i H^ (x;f)^ <p(ê ;f)+H^ (y;^ <p(0^;f) «?
where bn (i) = EZ(i)

n
the 71

th moment of an observation at node

(A.18)

Let

(A.19)

Substituting (A.19) into (A.18) results in the following equation for <po

20



x<
fefKgWO)

5>/(m/(*>/W)
tt>(G60

71 H£(*;04-Vd(fteO+»i(y;04-fo(ftfcO
da «

i H*(x;f)J-^o(ftfeO + H*(y;0^^o(ft60

(A.20)

+ o
x

Equating terms of order A//2, the terms of order A cancel. The terms of order Va

result in the equation

K>(Mt)[**'W+fr'W]

J

=1
1=1

M^Wg)
z^/Kw^/W)

(Poie.&tpi+hm]

+H
i
(x;t)^q> (e,&) + H

i
{y;t)-^<p {Ot &t)

ddi *

i r

Jt=lL

H*(x;Oj-^)(ftftO+H»ik(y;0^-^)(^feO

(A.21)

*«8
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The terms of order VA cancel if

(A.22)

In order for this to occur

and

* Xfc,(m
;
(t),zv(0)

/

Thus,

*,(*) = &i0>,-(0-

(A.23)

(A.24)

(A.25)

Next look for terms of order 1 in (A.20).

j*d(G60

= 1
Hm^vm

,

£fc;(m
;
-(0,O;(0)

£tf+f«otf+wo« ?>o(ft60

+

I L

H*(*;0-^«to(«fc0+ «<(y;0-3rft>(«6') fa+&i(0&]
5ft *

+21
i it L

Hfkfe')J-fD(ftftO+Hft(y;0^-WD(ftfcO

(A.26)

fe + &i(0&]-

Equations for the joint moments of {(Xj(f), Vy(0) can be obtained by

differentiating (A.26) with respect to {0,} and {£,} and evaluated at 6= £= 0. The

resulting equations are
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d.
Er v2

2>(my(f),i>
; (())

l J

+2XHtt(x;()E[X/ (()Xt (f)] +2£Htt(y;t)4X,(f)n(0]

t k

For £ * a

A E[x,(0x
fl (0]

= H
fl
(x;OE[X

fl
(f)X^(f)] + H

fl
(y;f)E[y

fl(OXi (f)]

+H^(x;OE[X
fl(OX/ (0] + ^(y;OE[Xfl(0^(0]

+ZHfljt
(x;f)E[X

jt (f)XXO] +lHflJt
(y;f)E[X£(On(0]

+lH^(x;f)E[x
fl(ox fcw]+XH^(y;04xflW^(0}

k k

* l
W

J lft(m
7(0^,(0)

(A.27)

(A.28)

+2fc,(^H/(x;f)E[X<(OY< (()] + H^yjO^/W]] (A.29)

+26iWXH/;(*;04x/W^(')]+H//(y;04viWY/W]
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For j*k

= [Hj (x; t)E[Xj (t)Yk (0] + Hj (y; t)^Yj(t)Yk (t
)]}&, (/)

+{*** (*;04x* (0y/W] + «fc(y;04y;Wy* (0]}*i (*)

+^(;)XH//(^04x/(0yik(0]+«;y(y;0E[
Yik(0y/(0]

+^WlHw (x;f)4x/ (OV}(f)] + Hw(y;04vi(Oy;W]

dt
E[Xk (0Yjk(0]

y'W)
+H

jt (*; 0{E[Vjt (OX*W] + 4X* W]*l (*)}

+X{Hj^(*;04x/WykW]+H^(y;')4yfcWyjfW]}
/

+Z{H^(x;04x/WxJt(0]+%(y;04xit(Oy;W]}^(^)

(A.30)

(A.31)
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For t * k

j-
t

E[X( (t)Yk (t)]

= Ht (x;t)E[Xe(t)Yk (tj\ + He {r,t)E[Yt (t)Yk (t)]

+{Hk (x; t)E[Xe (t)Xk (t)} + Hk (y; t)E[Xe(t)Yk (f)]}i>i (k)

+Yl
H

ej
(x-,t)E[x

j
(t)Yk (t)] + H

ej (y;t)E[Yk (t)Yj
{t)}

i

+I{h^(x;()e[x
;CWO] + Ht,(y;()4y;C)^(')]}fei(*)

(A.32)
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